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Abstract. In this paper, a double matrix equation with Hirota’sD-operators is given. Besides
the original solutions available, this equation provides half the exact solution lost in the common
Hirota direct method for solving the Ernst equation. Using this double matrix equation, we obtain a
realization of the double Ehlers transformation group. In addition, we discuss the inverse problem
about the equation.

1. Introduction

Due to the importance of the Ernst equation [1] in general relativity and Yang–Mills field
theory, various schemes and techniques to find exact solutions have been discussed by a great
many authors. Recently, Sasa and others [2–5] have suggested the use of the Hirota direct
method [6] to solve the Ernst equation. In this paper we prove that in their schemes, in fact,
half the exact solutions are lost. In order to obtain the total number of exact solutions, we
suggest consideration of a double matrix equation with Hirota’sD-operators, and we discuss
the solutions and some applications of the equation.

In this paper we use the so-called double-complex function method. It is known that
besides ordinary complex numbers, of which the imaginary unit is i (i2 = −1), there exist
other generalized complex numbers [7], namely, the hyperbolic complex numbers (or double
numbers), of which the imaginary unit isε, whereε2 = +1 andε 6= ±1. Corresponding
to the ordinary complex number fieldC, all hyperbolic complexesa + εb (a andb are real)
constitute a commutative ringH . In the double-complex function method the ordinary complex
numbers and the hyperbolic complex numbers are combined, the general method is detailed
in [8]. Let J denote the double imaginary unit, i.e.J = i or J = ε. When allan’s are real
numbers, and

∑∞
n=0 |an| is a convergent series, then the real numbera(J ) = ∑∞

n=0 anJ
2n

is called a double real number. It corresponds to a real number pair(aC, aH ), where
aC = a(J = i) = ∑∞

n=0(−1)nan and aH = a(J = ε) = ∑∞
n=0 an. If both a(J ) and

b(J ) are double real numbers, we callZ(J ) = a(J )+Jb(J ) a double-complex number.Z(J )
corresponds to a complex number pair(ZC,ZH ), whereZC = aC+ibC andZH = aH +εbH . In
this paper we employ only the double-complex functions with two real variables, for example
f (J ) = f (x, y; J ), x, y ∈ R1, and letf take the values in a set of double-complex numbers.

We call the following equation the double-complex Ernst equation:

Re [E(J )]∇2E(J ) = ∇E(J ) · ∇E(J )
0305-4470/99/417219+06$30.00 © 1999 IOP Publishing Ltd 7219
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∇2 = ∂2
ρ +

1

ρ
∂ρ + ∂2

z ∇ = (∂ρ, ∂z) (1)

where(θ, ρ, z) is the usual cylindrical coordinate system, andE(J ) = F(J ) + J�(J ) is the
double-complex Ernst potential, which is double-complex function ofρ andz only.

If E(J ) is a solution of equation (1), then it corresponds to a complex Ernst potential pair
(EC, EH ) = (FC + i�C, FH + ε�H ). For details of the theories and applications of the double-
complex Ernst equation, see [8–13]. In this paper we need to use the Neugebauer–Kramer
transformation [14, 8], under which a hyperbolic complex Ernst potential can be changed into
an ordinary complex Ernst potential as follows: ifEH = FH + ε�H is given, let

ÊC = F̂C = i�̂C F̂C = ρ

FH
∂ρ�̂C = ρ

F 2
H

∂z�H ∂z�̂C = − ρ

F 2
H

∂ρ�H (2)

thenÊC is just an ordinary complex Ernst potential.
We denote the two-dimensional Laplace–Hirota operator

D2 = D2
ρ +

1

ρ
Dρ +D2

z (3)

whereDρ andDz are Hirota’sD-operators with respect toρ andz, which are defined by [6]
(f andg are functions ofρ andz only):

Dm
ρ D

n
z f · g = (∂ρ − ∂ρ ′)m(∂z − ∂z′)nf (ρ, z)g(ρ ′, z′)

∣∣∣∣ ρ ′=ρ
z′=z
= (−1)m+nDm

ρ D
n
z g · f. (4)

Suppose thatM(J ) is a symmetric double 2× 2 matrix with the form

M(J ) =
[
M11(J ) JM12(J )

JM12(J ) M22(J )

]
(M11(J ) 6= 0). (5)

In particular, the determinant ofM(J ) must be negative definite, i.e. det[M(J )] =
M11(J )M22(J ) − J 2M2

12(J ) < 0, whereMij (J ) = Mij (ρ, z; J )(i, j = 1, 2) are double-
real functions ofρ and z only. We may as well denote det[M(J )] = −P 2(J ), where
P(J ) = P(ρ, z; J ) > 0 is a positive definite double-real function ofρ andz only; therefore
M(J ) is

M(J ) =
[
M11(J ) JM12(J )

JM12(J ) M−1
11 (J )[J

2M2
12(J )− P 2(J )]

]
. (6)

Now we consider the following double matrix equation with Hirota’sD-operators

D2M(J ) ·
√
|det[M(J )]| = 0 i.e. D2M(J ) · P(J ) = 0. (7)

By transforming the dependent variable as

F(ρ, z; J ) = P(ρ, z; J )
M11(ρ, z; J ) �(ρ, z; J ) = M12(ρ, z; J )

M11(ρ, z; J ) (8)

and developing equation (7), we obtain

F(J )

[
∂2
ρ +

1

ρ
∂ρ + ∂2

z

]
F(J ) = [∂ρF (J )]

2 + [∂zF (J )]
2 + J 2([∂ρ�(J )]

2 + [∂z�(J )]
2)

F (J )

[
∂2
ρ +

1

ρ
∂ρ + ∂2

z

]
�(J ) = 2[∂ρF (J )∂ρ�(J ) + ∂zF (J )∂z�(J )]. (9)

We can easily verify that equation (9) is just the double-complex Ernst equation (1). This
means that, by using equation (8), from each exact solutionM(J ) of (7) we can obtain a
corresponding double-complex Ernst solutionE(J )(M11(J ) must be non-vanishing). As for
the inverse problem, we shall come back to it later.
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WhenJ = i, equation (7) becomes

D2MC · PC = D2

[
M11C iM12C

iM12C −M−1
11C(M

2
12C + P 2

C)

]
· PC = 0. (10)

It is easily seen that equation (10) just leads to the cases discussed in [2–5]. From an exact
solutionMC of equation (10) we obtain an ordinary complex Ernst potential

EC = FC + i�C = PC

M11C
+ i
M12C

M11C
. (11)

WhenJ = ε, equation (7) becomes

D2MH · PH = D2

[
M11H εM12H

εM12H M−1
11H (M

2
12H − P 2

H )

]
· PH = 0. (12)

This equation will give us those solutions lost in [2–5]. Corresponding to an exact solution
MH of equation (12), the hyperbolic complex Ernst potential is

EH = FH + ε�H = PH

M11H
+ ε
M12H

M11H
(13)

and by the Neugebauer–Kramer transformation (2), the corresponding ordinary complex Ernst
potential is

ÊC = F̂C = i�̂C F̂C = ρ

FH
= ρM11H

PH

�̂C =
∫
ρF−2

H (∂z�H dρ − ∂ρ�H dz) =
∫
ρM2

11H

P 2
H

[
∂z
M12H

M11H
dρ − ∂ρ M12H

M11H
dz

]
. (14)

In equation (14) the integrability condition has been guaranteed by (9). GenerallyÊC 6= EC , ÊC
is a new solution. In addition, in general relativity we can obtain the axisymmetric gravitation
solution directly fromEH , in fact there is no need to usêEC [8].

Some exact solutions of equation (10) (it corresponds to the common Ernst equation [1])
can often be extended easily to double solutions of equation (7). Sometimes, in some solutions
of equation (10) we only need to substituteJ for i and make some simple changes; the results
obtained are just the solutions of equation (7). As an example, we consider the Nakamura’s
solution series [3, 15]. To use the symbols in equation (10), the series is

PC = ρn̄A(n)C M11C = ρn̄−n+1A
(n−1)
C M12C = iρn̄Ã(n+1)

C (15)

wheren̄ = 1
2n(n − 2), A(n)C andÃ(n)C , respectively, are determinants of two matrices whose

entries are some monomials of the imaginary unit i and the real functionsumC(ρ, z)(m =
1, 2, 3, . . .) [3]. Now, let um(J ) = um(ρ, z; J ) be double-real functions determined by the
following double recurrence relations:(

∂ρ +
m− 1

ρ

)
um(J ) = J 2∂zum−1(J )(

∂ρ − m
ρ

)
um−1(J ) = −J 2∂zum(J ) (m = 1, 2, 3, . . .). (16)

SubstitutingJ andum(J ) for i andumC in the determinantsA(n)C andÃ(n)C , respectively, the
results obtained read as

A(n)(J ) =

∥∥∥∥∥∥∥∥
u0(J ) Ju1(J ) . . . J n−1un−1(J )

Ju1(J ) u0(J ) . . . J n−2un−2(J )
...

. . .
...

J n−1un−1(J ) J n−2un−2(J ) . . . u0(J )

∥∥∥∥∥∥∥∥
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Ã(n)(J ) =

∥∥∥∥∥∥∥∥
Ju1(J ) u0(j) . . . J n−3un−3(J )

J 2u2(J ) Ju1(J ) . . . J n−4un−4(J )
...

. . .
...

J n−1un−1(J ) J n−2un−2(J ) . . . Ju1(J )

∥∥∥∥∥∥∥∥ . (17)

Let equation (15) be extended to

P (n)(J ) = ρn̄A(n)(J ) M
(n)
11 (J ) = ρn̄−n+1An−1(J ) M

(n)
12 (J ) = Jρn̄Ãn+1(J ) (18)

then it can be directly verified thatM(n)(J ) consisting ofM(n)
ij (J ) andP (n)(J ) in equation (18),

indeed, is a series of solutions of (7). WhenJ = i equation (18) returns to (15), i.e. the
Nakamura’s solution series. WhenJ = ε, from equations (13) and (14) we obtain a new series
of solutions of the ordinary complex Ernst equation as follows:

Ê (n)C =
A
(n−1)
H

ρn−2A
(n)
H

+ i
∫ [

A
(n−1)
H

]2

ρ2n−3
[
A
(n)
H

]2

{
∂z
ρn−1εÃ

(n+1)
H

A
(n−1)
H

dρ − ∂ρ ρ
n−1εÃ

(n+1)
H

A
(n−1)
H

dz

}

(n = 1, 2, 3, . . .). (19)

TheseÊC ’s cannot be obtained from the original Nakamura’s solutions.
Using equation (7), we can easily obtain a realization of the double Ehlers transformation

group [8]. Letπ(J ) denote the set of all matrices with forms as

S(J ) =
[
d(J ) J c(J )

Jb(J ) a(J )

]
det[S(J )] = a(J )d(J )− J 2b(J )c(J ) = 1 (20)

wherea(J ), b(J ), c(J ) andd(J ) are double-real constants. It is easily seen thatπ(J ) forms
a group (in fact, it is a subgroup of the so-calledSU(2; J ) group [8, 11]). Now, for any
S(J )επ(J ) we define a transformationJS(J ) acting upon matrixM(J ) in equation (5) by

Js(J ): M(J )→ M̃(J ) = S(J )M(J )St (J ) (21)

whereSt is the transpose ofS, then M̃(J ) is still symmetric and its form is still (see the
following equation (25))

M̃(J ) =
[
M̃11(J ) J M̃12(J )

J M̃12(J ) M̃−1
11 (J )[J

2M̃2
12(J )− P 2(J )]

]
det[M̃(J )] = det[M(J )] = −P 2(J ). (22)

Sincea(J ), b(J ), c(J ) andd(J ) are constants, for any exact solutionM(J ) of equation (7) we
have

D2M̃(J ) ·
√
|det[M̃(J )]| = D2S(J )M(J )St (J ) · P(J )
= S(J )[D2M(J ) · P(J )]St (J ) = 0. (23)

This means that̃M(J ) is an exact solution of equation (7) andJS(J ) is a transformation
generating new solutions. The exact form ofM̃(J ) is

M̃(J ) =
[

d2M11 + 2J 2cdM12 + J 2c2R J(bdM11 + adM12 + J 2bcM12 + acR)
J (bdM11 + adM12 + J 2bcM12 + acR) J 2(b2M11 + 2abM12 + J 2a2R)

]
R ≡ J 2M2

12− P 2

M11
(24)

where we have denoted simplya ≡ a(J ), b ≡ b(J ), etc. From equation (24) we obtain the
corresponding double-complex Ernst potential

Ẽ(J ) = F̃ (J ) + J �̃(J )
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F̃ (J ) = F(J )

[d(J ) + J 2c(J )�(J )]2 − J 2c2(J )F 2(J )

�̃(J ) = [a(J )�(J ) + b(J )][d(J ) + J 2c(J )�(J )] − a(J )c(J )F 2(J )

[d(J ) + J 2c(J )�(J )]2 − J 2c2(J )F 2(J )
. (25)

This result is just identical with the double Ehlers transformation [8]

J (J ): E(J )→ Ẽ(J ) = a(J )E(J ) + Jb(J )

J c(J )E(J ) + d(J )
a(J )d(J )− J 2b(J )c(J ) = 1. (26)

It can be directly verified that the groupπ(J ) is isomorphic to the double Ehlers transformation
group. Therefore, the set{JS(J )} for all S(J )’s in π(J ) evidently forms transformation group,
and it can be regarded as a realization of the double Ehlers transformation group, and the space
acted upon byJ is the set{M(J )} of all exact solutions of equation (7).

Finally, we consider the inverse problem about equation (7): How are we to obtain the
exact solutionM(J ) of equation (7) corresponding to a known double-complex Ernst potential
E(J ) = F(J ) + J�(J )? From equations (3) and (4) we have the following identical relation
for the functionsf , g andh of ρ, z,

D2hf · hg = h2D2f · g + 2[h∂2
ρh− (∂ρh)2 + h∂2

z h− (∂zh)2]fg. (27)

If the solutionM(J ) of equation (7) corresponds to a knownE(J ) = F(J )+J�(J ), thus from
equation (8) we can write

P(J ) = M11(J )F (J ) M(J ) = M11(J )µ(J )

µ(J ) =
[

1 J�(J )

J�(J ) J 2�2(J )− F 2(J )

]
. (28)

Using the identical relation (27), we have

D2M(J ) · P(J ) = M2
11(J )D2µ(J ) · F(J ) + 2{M11(J )∂

2
ρM11(J )− [∂ρM11(J )]

2

+M11(J )∂
2
zM11(J )− [∂zM11(J )]

2}µ(J )F (J ). (29)

From the left-upper entries of the matrices in equation (29) we obtain

∇̃2F(J ) + 2F(J )(∂2
ρ + ∂2

z )ln|M11(J )| = 0 ∇̃2 = ∂2
ρ −

1

ρ
∂ρ + ∂2

z . (30)

This means thatM11(J ) is only determined byF(J ) (and some suitable boundary conditions).
Suppose thatM11(J ) is in the formM11(J ) = e−θ(J ), whereθ(J ) is an unknown double-real
function ofρ andz only. According to equation (30),θ(J ) must obey the equation

∂2
ρθ(J ) + ∂2

z θ(J ) =
∇̃2F(J )

2F(J )
(31)

which seems to be the known two-dimensional Poisson’s equation (however,ρ and z are not
the Descartes coordinates). If an exact solutionθ(J ) is given, then we obtain the solution of
the above inverse problem, i.e.

M(J ) =
[

e−θ(J ) Je−θ(J )�(J )
Je−θ(J )�(J ) e−θ(J )[J 2�2(J )− F 2(J )]

]
. (32)

In addition, from equations (29) and (30) we obtain an interesting equivalent form of the
double-complex Ernst equation (1) with Hirota’sD-operators, i.e.

D2µ(J ) · F(J ) = µ(J )∇̃2F(J ). (33)

We shall discuss this equation and some applications elsewhere.
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